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Introduction

Live Face Spoofing Biometric System Anti-Spoofing

* Decompose a spoof face into spoof noise and live face
* Analyze the properties of the spoof noise

* Focus on print and replay attack

A Case Study of Spoof Noise Pattern

» What are the causes of spoof noise pattern?

* Color Distortions
* Display artefacts
* Presenting artefacts

* Imaging artefacts

» What are the characteristics of spoof noise pattern?
* Repetitive
* Ubiquitous

» How to model the spoofing process?

x=AX4+n=X4+(A—-DX+n=X+ N(X)
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» De-Spoof Net (DS Net)

« To estimate spoof noise pattern N and reconstruct the live image I

* Use 3D face shape to do non-rigid registration.

» Discriminative Quality Net (DQ Net)

« To guarantee reconstructed I is photorealistic

» Visual Quality Net (VQ Net)

» To guarantee reconstructed I is recognized as live by a pretrained model

Pattern

I.oss Functions

» De-Spoof Net (DS Net)

* Repetitive Loss

J, = { —max(H (F(N),k)), I€ Spoof

Imax(F(F(N), k), 1€ Live

e Zero\One Map Loss
J, = HCNNOlmap(F; @) - M”l

* Magnitude Loss
Jm = |IN||; for live

» Discriminative Quality Net (DQ Net)

Jq = |[CNNpg (1) —DH1

» Visual Quality Net (VQ Net)

IV Qirain = —Erer 10g(CNNy ¢ (I)) — Eyes log(1 — CNNy o (CNNps(I)))

* denotes equal contribution by the authors.

Experimental Results

» t-SNE Visualization of the estimated spoof noise
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black=live green=printl blue=print2 magenta=displayl red=display2

> Intra-test on Oulu

Protocol Method APCER BPCER ACER
CPqD 2.9% 10.8% 6.9%
Various GRADIANT 1.3% 12.5% 6.9%
1llumination
conditions CVPR 18 1.6% 1.6% 1.6%
Proposed method 1.2% 1.7% 1.5%
MixedFASNet 9.7% 2.5% 6.1%
Different spoof Proposed method 4.2% 4.4% 4.3%
medium CVPR 18 2.7% 2.7% 2.7%
GRADIANT 3.1% 1.9% 2.5%
MixedFASNet 5.346.7% 7.8+5.5% 6.5+4.6%
Different camera GRADIANT 2.6+3.9% 5.0+5.3% 3.8+2.4%
devices Proposed method 4.0+1.8% 3.8+1.2% 3.6+1.6%
CVPR’18 2.7+1.3% 3.1+1.7% 2.9+1.5%
Massy HNU 35.8435.3 8.3+4.1% 22.1+17.6%
All above GRADIANT 5.0+4.5% 15.0+7.1% 10.0+5.0%
challenges CVPR’18 9.3+5.6% 10.4+6.0% 9.5+6.0%
Proposed method 5.1+6.3% 6.1+5.0% 5.6+5.7%

» Testing results
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